
COOR

• Central “coordination” process.

• Performs run control functions:

– Users talk to COOR to use the system.

– Configuration and run transition requests go
through COOR.

– COOR sends commands to the other compo-
nents of the system.

– COOR maintains a model of the current de-
tector configuration.

– Users can allocate individual pieces of the de-
tector for readout and control.

∗ COOR ensures that requests don’t conflict
with each other.

– COOR steps the various pieces of the system
through run transitions.

– Maintains the name database.

• Full documentation:
http://www-d0.fnal.gov/d0dist/dist/packages/
coor/devel/doc/coorover.ps

1



Run Control and Configuration

DetectorDetector

L1, L2 TCCL1, L2 TCC

L3 SupervisorL3 Supervisor

L3 VRCL3 VRC

Readout CrateReadout Crate

L3 FilterL3 Filter

FCCFCC

Data Cable

Data Cable

Controls CrateControls Crate

UNIX Servers

NT Level 3

Ethernet

Ethernet

Linux PCs

Control Room PCs

Controls Trigger and Readout

Run Control
Client

Run Control
Client

DownloaderDownloader

DAQ ManagerDAQ Manager

COORCOOR
Collector / RouterCollector / Router

Data LoggerData Logger

Disk

Data DistributorData Distributor

EXAMINEEXAMINE

RIPRIP

1553

Vertical Interconnect

2



COOR information flow

• Processes to which COOR sends information are
called downloaders. COOR initiates these con-
nections. Processes that connect to COOR to
request services or information are called clients.

3



Starting and stopping

• Setup:

– setup d0online

• Start:

– start_daq coor

• Stop:

– stop_daq coor

• Coor usually runs on d0olc. It appears in ps list-
ings as a process running coormain.x.

• Log files:

– /online/log/coor/*.out

∗ Standard output/error. Stack tracebacks
will appear here in the event of a crash.

– /online/log/coor/YYYY/MM/*.log

∗ Daily log files. Contains detailed tracing of
activities.

4



Control scripts

• Reinitialize:

– initcoor

∗ (Will only work if no client has allocated
resources.)

– initcoor --force

∗ (Force all clients to give up resources they’ve
allocated.)

– Drops and reestablishes connections to all down-
loaders. Preserves all clients connections. Rereads
parameter and resource files.

• Request SCL init:

– sclinit

• Reinitialize L1 framework:

– initl1fw

– (No need to redo downloads.)

• Declare store beginning and end:

– store_begin store-number

– store_end

5



Reports

• Use ‘coorinfo type’ to get information about:

– clients — All connected clients.

– crates — All crates owned by some clients.

– downloaders — Status of COOR’s connections
to all downloaders (and SES).

– itc — All of COOR’s ITC connections.

– l1bits — All defined L1 trigger bits.

– l1egs — All defined L1 exposure groups.

– ll2bits — All defined L2 trigger bits.

– l2tools — All defined L2 tools/filters.

– l3bits — All defined L3 trigger bits.

– l3clients — All defined L3 client objects.

– store — The current store.

– streams — All defined streams.

6



Taker

• Primary user interface for controlling COOR.

• Start with ‘taker’.

• Modify menu:

– Change Trigger...

– Free Trigger

– Revalidate

– Invalidate...

– Recording

– Change Prescales... or L2UBRatios...

– Prescale Set... or L2UBRatio Set...

– Run Parameters...

– Reenable auto-disabled triggers

– SCL Init

– Exclude Crates...

7



Crate Exclusion

• Crates may be selectively excluded from the run
without having to redo the entire download.

• With no configuration loaded, can mark any crates
as excluded.

• With a configuration loaded, can only exclude/unexclude
crates that that configuration uses.

8



Coormon

• Displays current state.

• Use View menu to control what’s displayed.

• Click on an item to display internal attribute val-
ues.

• Control menu. (Caution: errors not reported.)

– Flush log

– Reconnect

– SCL init

– Force timeout

9



Coormon color scheme

• Connections:

– Green — Connected.

– Red — Not connected.

– Yellow — Waiting for reply.

• Clients:

– Neutral — Connected, but no configuration
loaded.

– Green — Configuration loaded.

– Cyan — Running.

– Black — Paused.

– Yellow — Transition in progress.

– Red — Cleaning up after abort or discon-
nect.

• Items:

– Neutral — Not allocated.

– Green — Allocated and valid.

– Red — Allocated and invalid.

– Yellow — Download pending.

10



Name Service

• COOR also maintains a database of name/value
pairs.

• Serves the d0online names database (server net-
work addresses).

• Can be used to send time-dependent information
to the trigger system.

– Example: Sending vertex information to STT.

• Can be used to selectively disable L2 inputs.

• May be freely used by detector groups.

• Names are hierarchical, separated by periods.

– Example: .l2_stt_beam_pos.bar0.phi

• Names may also have properties (additional name/value
pairs) associated with them.

• Property settings may be used to write name
server information into the brun/erun files.

• Use nv_editor to browse or edit name database.
(Should only be modified by experts.)

11



Detector model

• Detector modeled by a collection of objects, with
names of the form class:obj.

– Some are permanant, some are created as
needed.

• Types of objects include connections, clients, and
items (everything else).

• Items have attributes. (In the coormon display,
these start with ‘d_’ or ‘i_’.) Object attributes
are specified when a configuration is loaded.

• Items can be owned by clients. An item may be
owned by multiple clients, provided they specify
the same attribute values. A client may allocate
an item exclusively, meaning no other client can
allocate it. Some items are always allocated ex-
clusively (e.g., L1 bits).

• Owned item states:

– Valid — Item has been programmed to the
requested state.

– Invalid — Item is not known to be in the re-
quested state; a download is required.

– Downloading — A download for this item is
pending.

12



Item validity

• To start a run, all items owned by a client must
be valid.

• When a start run is requested, COOR attempts
to make all invalid items owned by the client valid.

• To force this without starting a run, select ‘Reval-
idate’ from the taker menu.

• Use the ‘Invalidate’ item from the taker menu to
inform coor that an item needs to be redown-
loaded.

• If a downloader connection breaks, the items it
manages are marked as invalid.

– Implies that, for example, when L3 is reset,
you don’t need to redownload the configura-
tion — just try to start it again.

13



Run Transitions

• Simplified client state diagram.

�����
�����
�����
�����

�����
�����
�����
�����

�����init

���������
���������
���������
���������

���������
���������
���������
���������

���������configured

���������
���������
���������
���������

���������
���������
���������
���������

���������revalidate

�������
�������
�������
�������

�������
�������
�������
�������

�������startrun

�������
�������
�������
�������

�������
�������
�������
�������

�������stoprun

�������
�������
�������
�������

�������
�������
�������
�������

�������running

�������
�������
�������
�������

�������
�������
�������
�������

�������paused

�
�
���
���

���
���
������������������� � ��������������������� �disco

�
�
�
�

�
config

���
���
���
����

free

���������
���������
�
start / revalidate

�������
�������
�������
�������

�������
�������
�������
�������

�������startlbn

���������
����������

done / stoprun

�������
�������
�������
�������

�������
�������
�������
�������

�������stoplbn

�����������
�����������

�
done / enablel1

�
�
�
�

�
pause / disablel1

�
�
�
��

resume / enablel1

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
������������� �

stop

���
������

modify

���
������

modify

���
���
���

modify

�
�
�
�
�

�
done / startrun

�
�
�
�

�

done / getlbn

���������
���������
���������
���������
���������
���������
���������
��������� �

stop / disablel1

�
�
�
�
�

done / getlbn

14



Coortalk

• COOR/client communication uses text commands.

• Coortalk allows sending those commands directly.

• Start with ‘coortalk’. Exit with Control-D.

• Some useful commands:

– help — Get a list of commands.

– info type — As earlier.

– disconnect dnl. . . — Drop connection to dnl.

– reconnect dnl. . . — Reconnect to dnl.

– force_invalidate pattern — Invalidate items
matching RE pattern.

– scl_init — Generate a SCL init.

– timeout — Force a download timeout.

– broadcast text — Send a message to all clients.

– exitcoor — Tell coor to exit.

– force_free run/client nb . . . — Force clients
to give up resources.

– force_pause run/client nb . . . — Pause runs.

– force_stop run/client nb . . . — Stop runs.

– reinit — Reinitialize coor, but only if there
are no owned resorces.

– force_reinit — Reinitialize coor.

15



Parameters file

• /online/data/coor/coor.params

• Read during startup and reinitialization.

• Taker, coormon, coortalk read it too.

• Format is Python source.

• Don’t change unless requested by experts.

• Host/port addresses used by coor now come from
d0online_names.py.

• Other file paths set here.

• Taker dialog formats defined here.

16



Other data files

• Resource file.

– /online/data/coor/resources/coor_resources.xml

– Read during startup and reinitialization.

– Describes the available detector resources.

∗ Assignment of names to crates, L1 terms,
etc. is done here.

– Don’t change unless requested by experts.

– Other files in this directory define L1 trigger
manager terms and L2 resources.

• Trigger configurations.

– Live under /online/data/coor/configurations.

– Canned configurations that can be selected
from taker.

• Current run number.

– /online/data/coor/runnumber

– Don’t change!

• Name service database.

– /online/data/coor/name_server_db.dat

– A Python pickle file.

– Should normally never need to change this by
hand.

17



Other Output Files

• Brun/erun/rrun files:

– /online/data/coor/brun

– COOR writes files in here on run transitions.

– Files read by rungrabber and entered into the
database.

• Logbook spool directory.

– /online/data/coor/elog_spool

– COOR writes files here temporarily, pending
transmission to the logbook server.

– Other processes can also write files here to
be sent to the logbook. (Actual transmission
may be delayed by up to 10 minutes.)

18



Online simulator

• Can be used to check trigger configurations.

• Run with

– coorsim_onl configuration

– configuration can be a file in the configuration
tree, or a path to a file somewhere else.

• Will output the text that COOR would send back
to Taker.

• Will create in the current directory a bunch of files
containing the text that COOR would send to the
downloaders, as well as logging information.

19



Reinits, etc.

• Many sets of instructions tell you to free the trig-
ger list or reinit COOR when you don’t really need
to.

• Should only need to reinit coor the parameters
file or a resource file has changed.

• (Other than general cleanliness before a store...)

• To force reinitialization of one of the processes
COOR talks to, start coortalk and:

– disconnect dnl

– reconnect dnl

– No need to free the trigger configuration —
the necessary commands will be automatically
resent when needed.

20



Other hints

• If COOR is taking a long time to respond, look on
the first row of coormon. If something is yellow,
that means COOR is waiting for a reply from that
process — so if it stays yellow for a long time,
that process may be having problems. Check its
log file, etc.

• COOR will timeout after one minute if it doesn’t
get a response. However, there’s often cleanup
that has to be done afterwards that involves send-
ing more messages — for which COOR will also
wait a minute before responding. Thus, if some-
thing isn’t responding, COOR can sometimes take
a couple minutes to complete an operation. If you
know that there is no point in waiting (because
whatever COOR’s waiting for will never complete
successfully) you can try connecting with coortalk
and issuing ‘timeout’. That will force coor to
time out immediately.

• If there is no apparent reason why COOR isn’t re-
sponding, check the .out file in /online/log/coor.
If there’s a Python stack traceback there, COOR
will need to be killed and restarted.

• Let me know if you have to kill COOR because
it’s misbehaving.

21


